Röntgenographische Untersuchungen im System: Vanadin—Arsen—Kohlenstoff

Von

H. Boller und H. Nowotny

Aus dem Institut für physikalische Chemie der Universität Wien

Mit 1 Abbildung

(Eingegangen am 12. Mai 1966)

Zwei neue binäre Vanadinarsenide werden identifiziert: V_5As_3 mit W_5Si_3 -Struktur (*T*1) und $V_{\sim 1,5}As$, dessen Elementarzelle bestimmt wird. Im Dreistoff V—As—C werden zwei ternäre Phasen sichergestellt: $V_5As_3C_{0,7}$ mit teilweise aufgefüllter Mn_5Si_3 -Struktur und V_2AsC mit Cr_2AlC -Struktur (*H*-Phase).

Two new binary vanadium arsenides have been identified: V₅As₃ with W₅Si₃-structure (*T* 1) and V~_{1,5}As, of which the unit cell is determined. Two ternary phases were found in the ternary system V—As—C: V₅As₃C_{0.7} having partially filled Mn₅Si₃-structure; V₂AsC cristallizes with the Cr₂AlC-type (*H*-phase).

Einleitung

Im Rahmen von kristallchemischen Untersuchungen an Dreistoffen vom Typ $T-M-X^*$ wurde das System V-As-C geprüft.

Folgende Phasen sind im Randsystem V—As beschrieben worden: V₃As mit Cr₃Si-Typ, VAs mit MnP-Typ¹ sowie VAs₂ mit OsGe₂-Typ². Ferner wurde die Existenz mindestens einer Kristallart im Bereich zwischen V₃As und VAs beobachtet¹. Verhältnismäßig gut bekannt ist ferner der Zweistoff: V—C³, während Arsen offensichtlich keine stabilen Carbide bildet⁴. Die im Vergleich zu den Carbiden von Ti, Nb und Ta

^{*} T =Übergangsmetall, M = Metametall, X = Nichtmetall.

¹ K. Bachmayer und H. Nowotny, Mh. Chem. 86, 741 (1955).

² H. G. Meißner und K. Schubert, Z. Metallkde. 56, 523 (1965).

³ E. K. Storms, LA-2942, UC-25, Metals, Ceramics and Materials, T 10-4500 (31st Ed., 1964).

⁴ Gmelins Handb. Anorg. Chemie, Bd. 17, S. 468 (1952).

geringere Stabilität der Vanadiumcarbide macht die Existenz ternärer Phasen im Dreistoff V—As—C wahrscheinlich.

Probenherstellung und experimentelle Technik

Folgende Ausgangskomponenten wurden eingesetzt: Vanadinpulver der Fa. Starck, reines Arsen und Reaktorgraphit.

Die gut vermischten Ausgangsstoffe wurden zur Reaktion in evakuierten Quarzröhrchen eingeschmolzen und 200 Stdn. bei 800 oder 48 Stdn. bei 1100°C geglüht. Die Proben fielen dabei in Pulverform an. Bei 1100°C geglühte Proben enthielten gelegentlich kleine, gut ausgebildete Kristalle.

 Abb. 1. Abhängigkeit des Achsenverhältnisses der *H*-Phase von der Gruppennummer des *B*-Elements.
 Die Beschriftung der c/a-Koordinate soll (von unten nach oben) lauten: 3,0, 4,0, 5,0.

Die röntgenographische Identifizierung geschah durch Pulver-(Film- und Diffraktometer)- bzw. Einkristallaufnahmen.

Das System V-As

Struktur und Gitterparameter der Phasen V_3As , VAsund VAs_2 konnten bestätigt werden. Übereinstimmung mit dem früheren Befund¹ ergab sich auch bezüglich der Existenz von weiteren Kristallarten im Bereich zwischen 50 und 75 At% V.

Die Phase V₅As₃: Dieses Arsenid besitzt die W₅Si₃(T1)-Struktur, wie die Auswertung eines Pulverdiagramms beweist (Tab. 1). Die Gitterparameter von V₅As₃ sind:

$$a = 9,506$$
 Å
 $c = 4,804$ Å, $c/a = 0,505$.

Die Phase weist einen homogenen Bereich nach der metallreichen Seite zu auf. Die Übereinstimmung mit dem früher beschriebenen V_5 Ge₃⁵ ist vollständig, so daß die Intensitätsrechnung in Tab. 1 praktisch auch für V_5 Ge₃ gilt. Das Auftreten der *T*1-Struktur ist bemerkenswert wegen der für metallreiche Arsenide kurzen As—As-Abstände von 2,40 Å.

Der Bereich zwischen V_5As_3 und VAs: Eine weitere Kristallart wurde bei einer Zusammensetzung von 60 At% V gefunden. *DK*- und *Weissen*berg-Aufnahmen um [001], sowie Pulveraufnahmen lassen sich mit einer orthorhombischen Zelle:

$$a = 18,10_0 \text{ Å}$$

 $b = 13,73_1 \text{ Å}$
 $c = 3,42_0 \text{ Å}$

⁵ H. Holleck, H. Nowotny und F. Benesovsky, Mh. Chem. 94, 497 (1963).

(hkl)	10 ³ · sin ² θ beob.	10 ³ · sin ² θ ber.	Int. beob.	Int. ber.
(110)		13,1		1
(200)		26,3		4
(220)		52,5	2	3
(211)	58, 5	58,5	14	21
(310)	65,8	65,7	7	14
(002)	102,7	102,8	30	21
(400)	104,9	105,0	6	4
(321)	110,8	111,0	35	41
(112)	116,2	116,0	2	2
(330)	118,2	118,2	13	13
(202)	128,9	129;1	53	58
(420)	131,2	131,3	60	63
(411)	137,0	137,3	105	100
(222)	154,9	155,3	27	35
(312)		168,5		0
(510)	170,6	170,9	1	2
(431) (501)		189,8		0
(402)	207,6	207,8	9	14
(440)	210,3	210,1	3	4
(521)	215,9	216,1	21	22
(332)	220,9	221,0	12	16
(530)	222,9	223,2	6	6
(422)		234,1		0
(600)	235,9	236,3	3	3
(103)	······	237,9		0
(620)]	969 0	262,6)	-	3)
(213)	203,0	264,2)	Ð	1
$(611)^{-1}$		$268,6^{'}$		e´
(512)		233,5		0
(303)		290,5		0
(541)		294,9		0
(442)	312,7	312,9	3	2
(323)	316,4	316,7	5	5
(631)	321,3	321,2	4	3
(532)	325,9	326,1	4	1
(710) (550)	328,4	328,3	5	2
(602)	339,2	339,2	õ	2
(640)		341,4		0
(413)	342,8	343,0	20	15
(701)		347,4		0
(622)	364,9	365,4	5	õ
(721)	373,7	373,6	õ	4
(730)	381,0	380,8	3	4
(433) (503)		395,5		0
(004)	411,3	411,4	6	6

Tabelle 1. Auswertung und Intensitätsberechnung einer Diffraktometeraufnahme von V₅As₃ mit W₅Si₃-Typ (CuKa₁-Strahlung) $x_{\rm V} = 0.074$, $y_{\rm V} = 0.223$, $x_{\rm As} = 0.160$, $B = 3.2 \cdot 10^{-16}$ cm

(hkl)	$10^3 \cdot \sin^2 \theta$ beob.	$10^3 \cdot \sin^2 \theta$ ber.	Int. beob.	Int. ber.
(800)		420,2		0
(523)	421,8	421,8	6	5
(114)		424,5		0
(651)	_	426,2		1
(712) (552)	431,1	431,1	6	8
(204)		437,6		0
(642)	443,9	444,2	12	14
(820)	446,5	446, 4	7	4
(811) (741)	452,7	452,5	5	3
(224)		463,8		0
(660)	472.6	472.7	7	5

Fortsetzung (Tabelle 1)

Tabelle 2. Auswertung und Intensitätsberechnung einer Diffrak-tometeraufnahme von V₅As₃C_{0,7} mit teilweise aufgefüllter Mn₅Si₃-Struktur (CuK α_1 -Strahlung); $x_V = 0.24$; $x_{As} = 0.605$

(hkil)	10 ³ · sin ² θ beob.	$10^3 \cdot \sin^2 \theta$ ber.	Int. beob.	Int. ber.
(1010)		15.6		
$(11\bar{2}0)$	46.6	46.8	10	3
$(20\overline{2}0)$	62.3	62,4	4	1
$(11\overline{2}1)$	70.7	70,9	17	17
(0002)	96,1	96,3	34	24
$(21\overline{3}0)$	108,9	109,2	15	19
$(10\overline{1}2)$	112,2	111,9	5	4
$(\overline{2}1\overline{3}1)$	133,2	133,3	100	100
(3000)	140,3	140,4	25	42
$(11\overline{2}2)$	143,0	143,1	50	68
$(\overline{2}0\overline{2}0)$	158,6	158,7	11	11
$(22\overline{4}0)$		187,2		0
$(31\overline{4}0)$	202,9	202,8	6	6
$(21\overline{3}2)$	205,4	205,5	6	1
$(22\overline{4}1)$	211,4	211,3	10	10
$(31\overline{4}1)$	226,9	226,9	24	21
$(30\overline{3}2)$	236,8	236,7	2	2
(4000)		249,6		0
$(11\overline{2}3)$	263,9	263, 6	1	2
$(22\overline{4}2)$	283,5	283,5	5	11
$(32\overline{5}0)$		296,4		0
$(31\overline{4}2)$		299,1		0
$(32\overline{5}1)$	320,7	320,5	4	4
$(21\overline{3}3)$	325,9	326,0	24	21
$(41\overline{5}0)$		327,6		3
(4042)	345,8	345,9	3	3
$(41\overline{5}1)$		351,7		0
(0004)	385,5	385,4	6	4

(hkil)	$10^3 \cdot \sin^2 \theta$ beob.	10 ³ • sin ² θ ber.	Int. beob.	Int. ber.
(5050)	390,1	390,0	6	7
$(32\overline{5}2)$	392,4	392,7	5	6
(1014)		401,0		0
$(22\bar{4}3)$	404,1	404,0	2	3
(3143)	419,8	419,6	7	7
(3360)		421,2		0
$(41\overline{5}2)$		423,9		2
$(11\overline{2}4)$		432,2		0
$(42\overline{6}0)$	436,7	436,8	3	5
$(33\overline{6}1)$	445,4	445,3	6	6
$(20\overline{2}4)$		447,8		0
$(42\overline{6}1)$	460,8	460,9	3	7
$(51\overline{6}0)$	483,6	483,8	1	1
$(50\overline{5}2)$	486.5	486,3	15	17

Fortsetzung (Tabelle 2)

Tabelle 3. Auswertung und Intensitätsberechnung einer Debye-Scherreraufnahme von V₂AsC mit Cr₂AlC-Struktur (CrK α -Strahlung); $z_V = 0.086$

(hkil)	$\begin{array}{c} 10^{2} \cdot \sin^{2} \theta \\ \text{beob.} \end{array}$	10 ³ - sin ² 0 ber.	Int. beob.	Int. ber.
(0002)	40,4	40,5	8	2
(0004)	162, 2	162, 1	ss	1
(1010)	180, 6	180,5	m	24
$(10\overline{1}1)$	190,8	190,7	\mathbf{ms}	3
(1012)	221,1	221,1	\mathbf{ms}	3
(1013)	271,5	271,7	sst	100
(0006)	364,8	364,7	m ⁻	12
$(10\overline{1}5)$	433,9	433,8	\mathbf{ms}	2
$(11\overline{2}0)$	541,8	541,6	\mathbf{mst}	28
(1016)	545,3	545,3	\mathbf{mst}	15
$(11\overline{2}2)$	582,5	582,1	8	1
(0008)	647,9	648,4	SS	0,7
$(10\overline{1}7)$	676,7	677,0	SS	0,7
$(11\overline{2}4)$	703,4	703,7	s	1
$(20\overline{2}0)$	722,3	722,1	SS	5
$(20\overline{2}1)$	732,4	732,2	85	1
$(20\overline{2}2)$	762,8	762,6	85	1
$(20\overline{2}3)$	813,3	813,3	\mathbf{mst}	43
$(10\overline{1}8)$	828,7	828,9	858	0,4
$(11\overline{2}6)$	906,6	906,3	\mathbf{st}	73
$(20\overline{2}5)$	975,5	975.4	\mathbf{ms}	6

indizieren. Die Auslöschungsgesetze: (hkl) nur mit k + l = 2n, (h0l) mit h = 2n und l = 2n führen auf die wahrscheinlichste Raumgruppe D_{2h}^{17} .

Diese Phase entspricht im Gegensatz zu V₅As₃ offensichtlich nicht dem analogen Germanid V₁₁Ge₈⁶. Unter Annahme einer Formel "V₃As₂" ergibt sich $Z \approx 12$.

Daneben existieren in diesem Gebiet noch weitere Phasen, die jedoch nur bei hoher Temperatur stabil zu sein scheinen.

Der Dreistoff V-As-C

Eine Auswertung von Dreistofflegierungen im Gebiet 25—50 At% As und 0—50 At% C ergab bisher das Bestehen zweier Komplexcarbide.

Die Phase V₅As₃C_{0,7}: Wie mehrfach diskutiert, vermögen Nichtmetallatome die Typen T1 (W₅Si₃) und T2 (Cr₅B₃) in die aufgefüllte Mn₅Si₃-Struktur überzuführen. Tatsächlich führt ein Zusatz von Kohlenstoff, ähnlich wie bei V₅Ge₃, wieder zum teilweise aufgefüllten Mn₅Si₃-Typ (Tab. 2). Dagegen gelang es nicht, diesen mit O, N, B sowie mit Cu oder Ni zu stabilisieren. Das C-haltige V-Arsenid entspricht der Zusammensetzung V₅As₃C_{0,7} und bildet sich innerhalb eines relativ schmalen homogenen Bereiches. Die C-Positionen in den V-Oktaedern wurden bei der Intensitätsrechnung (s. Tab. 2) mitberücksichtigt. Als Gitterparameter findet man für V₅As₃C_{0,7}:

$$a = 7,121 ext{ \AA} \ c = 4,963 ext{ \AA}, c/a = 0,697.$$

Die H-Phase (V₂AsC): Das Pulverdiagramm dieser bei der entsprechenden Zusammensetzung auftretenden Kristallart entspricht hinsichtlich der Intensitäten vollständig der Phase V₂GeC⁷ (Tab. 3). Die Gitterparameter sind:

$$a = 3.11_3 \text{ \AA}$$

 $c = 11.38 \text{ \AA} \text{ und } c/a = 3.65_6.$

Das gegenüber den H-Phasen V₂GaC und V₂GeC merklich niedrigere Achsenverhältnis steht im Einklang mit der bereits früher beobachteten Tendenz, wonach mit zunehmender Gruppennummer des B-Elements c/a systematisch kleiner wird⁸. Dies läßt sich mit dem zunehmenden polaren Charakter der H-Phasen, der bei Schwefel am stärksten ausgeprägt ist, in Beziehung bringen. Wie aus Abb. 1 hervorgeht, liegen die c/a-Werte praktisch auf einer Geraden, wenn man die Gruppennummer als Abszisse wählt.

Diese Arbeit wurde durch das US-Government unterstützt.

⁶ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 95, 1544 (1964).

⁷ W. Jeitschko, H. Nowotny und F. Benesovsky, Mh. Chem. 94, 844 (1963).

⁸ H. Nowotny, W. Jeitschko und F. Benesovsky, in: Symposium sur la Métallurgie des Poudres, Paris, Juni 1964, Editions Métaux, Saint Germain-en-Laye.